University of Natural Sciences Introduction to Diophantine Methods: Irrationality and Transcendence
نویسنده
چکیده
1 Irrationality 3 1.1 Simple proofs of irrationality . . . . . . . . . . . . . . . . . . . . 3 1.2 Variation on a proof by Fourier (1815) . . . . . . . . . . . . . . . 10 1.2.1 Irrationality of e . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.2 The number e is not quadratic . . . . . . . . . . . . . . . 11 1.2.3 Irrationality of e √ 2 (Following a suggestion of D.M. Masser) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.4 The number e is not quadratic . . . . . . . . . . . . . . . 14 1.2.5 The number e √ 3 is irrational . . . . . . . . . . . . . . . . 15 1.2.6 Is-it possible to go further? . . . . . . . . . . . . . . . . . 15 1.2.7 A geometrical proof of the irrationality of e . . . . . . . . 15 1.3 Irrationality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.1 Statement of the first criterion . . . . . . . . . . . . . . . 16 1.3.2 Proof of Dirichlet’s Theorem (i)⇒(iii) in the criterion 1.11 17 1.3.3 Irrationality of at least one number . . . . . . . . . . . . . 19 1.3.4 Hurwitz Theorem . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.5 Irrationality of series studied by Liouville and Fredholm . 26 1.3.6 A further irrationality criterion . . . . . . . . . . . . . . . 28 1.4 Irrationality of e and π, following Nesterenko . . . . . . . . . . . 29 1.4.1 Irrationality of e for r ∈ Q . . . . . . . . . . . . . . . . . 29 1.4.2 Irrationality of π . . . . . . . . . . . . . . . . . . . . . . . 33 1.4.3 Hermite’s integral formula for the remainder . . . . . . . 34 1.4.4 Hermite’s identity . . . . . . . . . . . . . . . . . . . . . . 35
منابع مشابه
Introduction to Diophantine methods irrationality and transcendence
1 Irrationality 3 1.1 Simple proofs of irrationality . . . . . . . . . . . . . . . . . . . . 3 1.1.1 History of irrationality . . . . . . . . . . . . . . . . . . . . 10 1.2 Variation on a proof by Fourier (1815) . . . . . . . . . . . . . . . 12 1.2.1 Irrationality of e . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.2 The number e is not quadratic . . . . . . . . . . . . . . . 13 1.2.3 Irr...
متن کاملDiophantine approximation , irrationality and transcendence Michel
1. Algebraic independence of the two functions ℘(z) and ez. Legendre’s relation η2ω1 − η1ω2 = 2iπ. Proof: integrate ζ(z)dz on a fundamental parallelogram. Application: algebraic independence of the two functions az + bζ(z) and ℘(z). 2. Section § 10.7.2: Morphisms between elliptic curves. The modular invariant. 3. Section § 10.7.3: Endomorphisms of an elliptic curve; complex multiplications. Alg...
متن کاملAn Introduction to Irrationality and Transcendence Methods. 3 Auxiliary Functions in Transcendence Proofs 3.1 Explicit Functions
This yields an irrationality criterion (which is the basic tool for proving the irrationality of specific numbers), and Liouville extended it into a transcendence criterion. The proof by Liouville involves the irreducible polynomial f ∈ Z[X] of the given irrational algebraic number α. Since α is algebraic, there exists an irreducible polynomial f ∈ Z[X] such that f(α) = 0. Let d be the degree o...
متن کاملDiophantine approximation , irrationality and transcendence Michel Waldschmidt
For proving linear independence of real numbers, Hermite [18] considered simultaneous approximation to these numbers by algebraic numbers. The point of view introduced by Siegel in 1929 [34] is dual (duality in the sense of convex bodies): he considers simultaneous approximation by means of independent linear forms. We define the height of a linear form L = a0X0 + · · · + amXm with complex coef...
متن کاملDiophantine approximation , irrationality and transcendence
Addition to Lemma 81. In [1], § 4, there is a variant of the matrix formula (64) for the simple continued fraction of a real number. Given integers a0, a1, . . . with ai > 0 for i ≥ 1 and writing, for n ≥ 0, as usual, pn/qn = [a0, a1, . . . , an], one checks, by induction on n, the two formulae ( 1 a0 0 1 )( 1 0 a1 1 ) · · · ( 1 an 0 1 ) = ( pn−1 pn qn−1 qn ) if n is even ( 1 a0 0 1 )( 1 0 a1 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007