University of Natural Sciences Introduction to Diophantine Methods: Irrationality and Transcendence

نویسنده

  • Michel Waldschmidt
چکیده

1 Irrationality 3 1.1 Simple proofs of irrationality . . . . . . . . . . . . . . . . . . . . 3 1.2 Variation on a proof by Fourier (1815) . . . . . . . . . . . . . . . 10 1.2.1 Irrationality of e . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.2 The number e is not quadratic . . . . . . . . . . . . . . . 11 1.2.3 Irrationality of e √ 2 (Following a suggestion of D.M. Masser) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.4 The number e is not quadratic . . . . . . . . . . . . . . . 14 1.2.5 The number e √ 3 is irrational . . . . . . . . . . . . . . . . 15 1.2.6 Is-it possible to go further? . . . . . . . . . . . . . . . . . 15 1.2.7 A geometrical proof of the irrationality of e . . . . . . . . 15 1.3 Irrationality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.1 Statement of the first criterion . . . . . . . . . . . . . . . 16 1.3.2 Proof of Dirichlet’s Theorem (i)⇒(iii) in the criterion 1.11 17 1.3.3 Irrationality of at least one number . . . . . . . . . . . . . 19 1.3.4 Hurwitz Theorem . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.5 Irrationality of series studied by Liouville and Fredholm . 26 1.3.6 A further irrationality criterion . . . . . . . . . . . . . . . 28 1.4 Irrationality of e and π, following Nesterenko . . . . . . . . . . . 29 1.4.1 Irrationality of e for r ∈ Q . . . . . . . . . . . . . . . . . 29 1.4.2 Irrationality of π . . . . . . . . . . . . . . . . . . . . . . . 33 1.4.3 Hermite’s integral formula for the remainder . . . . . . . 34 1.4.4 Hermite’s identity . . . . . . . . . . . . . . . . . . . . . . 35

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to Diophantine methods irrationality and transcendence

1 Irrationality 3 1.1 Simple proofs of irrationality . . . . . . . . . . . . . . . . . . . . 3 1.1.1 History of irrationality . . . . . . . . . . . . . . . . . . . . 10 1.2 Variation on a proof by Fourier (1815) . . . . . . . . . . . . . . . 12 1.2.1 Irrationality of e . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.2 The number e is not quadratic . . . . . . . . . . . . . . . 13 1.2.3 Irr...

متن کامل

Diophantine approximation , irrationality and transcendence Michel

1. Algebraic independence of the two functions ℘(z) and ez. Legendre’s relation η2ω1 − η1ω2 = 2iπ. Proof: integrate ζ(z)dz on a fundamental parallelogram. Application: algebraic independence of the two functions az + bζ(z) and ℘(z). 2. Section § 10.7.2: Morphisms between elliptic curves. The modular invariant. 3. Section § 10.7.3: Endomorphisms of an elliptic curve; complex multiplications. Alg...

متن کامل

An Introduction to Irrationality and Transcendence Methods. 3 Auxiliary Functions in Transcendence Proofs 3.1 Explicit Functions

This yields an irrationality criterion (which is the basic tool for proving the irrationality of specific numbers), and Liouville extended it into a transcendence criterion. The proof by Liouville involves the irreducible polynomial f ∈ Z[X] of the given irrational algebraic number α. Since α is algebraic, there exists an irreducible polynomial f ∈ Z[X] such that f(α) = 0. Let d be the degree o...

متن کامل

Diophantine approximation , irrationality and transcendence Michel Waldschmidt

For proving linear independence of real numbers, Hermite [18] considered simultaneous approximation to these numbers by algebraic numbers. The point of view introduced by Siegel in 1929 [34] is dual (duality in the sense of convex bodies): he considers simultaneous approximation by means of independent linear forms. We define the height of a linear form L = a0X0 + · · · + amXm with complex coef...

متن کامل

Diophantine approximation , irrationality and transcendence

Addition to Lemma 81. In [1], § 4, there is a variant of the matrix formula (64) for the simple continued fraction of a real number. Given integers a0, a1, . . . with ai > 0 for i ≥ 1 and writing, for n ≥ 0, as usual, pn/qn = [a0, a1, . . . , an], one checks, by induction on n, the two formulae ( 1 a0 0 1 )( 1 0 a1 1 ) · · · ( 1 an 0 1 ) = ( pn−1 pn qn−1 qn ) if n is even ( 1 a0 0 1 )( 1 0 a1 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007